An automatic segmentation technique in body sensor networks based on signal energy
نویسندگان
چکیده
Monitoring human activities using wearable wireless sensor nodes has the potential to enable many useful applications for everyday situations. The long-term lifestyle monitoring can greatly improve healthcare by gathering information about quality of life; aiding the diagnosis and tracking of certain diseases such as Parkinson’s. The deployment of an automatic and computationally-efficient algorithm reduces the complexities involved in the detection and recognition of human activities in a distributed system. This paper presents a new algorithm for automatic segmentation of routine human activities. The proposed algorithm can distinguish between discrete periods of activity and rest without specifically knowing the activity. A finite subset of nodes can detect all human activities, but each node by itself can only detect a particular set of activities. For local segmentation we choose the parameters for each node that result in the least segmentation error. We demonstrate the effectiveness of our algorithm on data collected from body sensor networks for a scenario simulating a set of daily activities.
منابع مشابه
RAWSN: A Routing Algorithm Based on Auxiliary Nodes to Reduce Energy Consumption in Wireless Sensor Networks
In this paper, an algorithm , based on genetics and auxiliary nodes, to reduce energy consumption in wireless sensor networks has been presented. In this research, by considering some parameters as energy and distance, a target function has been created, which is more optimum comparing to other methods. In this research cluster head is selected by genetic algorithm. In RAWSN algorithm a new tec...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملEIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks
Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009